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The effect of Brownian diffusion on shear-induced 
coagulation of colloidal dispersions 
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Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544 

(Received 27 April 1982 and in revised form 5 January 1983) 

The effect of a small amount of Brownian diffusion on shear-induced coagulation of 
spherical particles has been calculated. This has been accomplished by considering 
the binary collision process between a test sphere and identical spheres interacting 
with the test sphere through induced-dipole attraction, electrostatic repulsion and 
hydrodynamically induced forces. The effect of diffusion is found by means of an 
expansion in inverse PBclet number. Specific calculations were performed for uniaxial 
extension and for laminar shear flow. It is found that Brownian diffusion, the effect 
of which is nonlinearly coupled with flow type and strength, can act to increase or 
decrease the coagulation rate. 

1. Introduction 
Colloidal particles suspended in an aqueous medium may or may not undergo 

spontaneous coagulation. Electrostatic stabilization of the suspension can occur if 
ions of similar charge are bound to the particle surfaces. However, induced-dipole 
attraction between the particles tends to produce agglomerates. I n  the presence of 
induced-dipole attraction and electrostatic repulsion two particles typically exhibit 
modest attraction at large separations, undergo repulsion at intermediate separations, 
and are strongly attracted a t  particlesurface separations small relative to the 
particle radius. 

When a colloidal dispersion is subjected to hydrodynamic forces, these may act 
either to enhance or to  inhibit coagulation. Work by van de Ven & Mason (1976) and 
Zeichner & Schowalter (1977) hasshownin considerabledetail how the physicochemical 
and hydrodynamic forces interact and hence affect colloid stability. 

When the particles are very small, so that the relative bulk convection of two 
interacting particles is weak compared with the motion caused by Brownian diffusion, 
one can neglect macroscopic convective effects, but must account for Brownian 
motion as a means by which particles are carried towards and away from each other. 
In aqueous systems, for example, if the particles have a diameter in the neighbourhood 
of 0.1 pm or less, i t  is quite likely that bulk hydrodynamics is of no consequence for 
colloid stability. 

Many years ago Smoluchowski (1917) considered the two asymptotic limits of 
Brownian and shear-induced coagulation. His model for the Brownian case was 
essentially the diffusion of non-interacting spheres to a test sphere, the dynamics 
being described by the spherically symmetric portion of the diffusion equation with 
a uniform diffusivity. From the rate a t  which particles diffused to the test sphere and 
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were hence removed from the diffusive process, a coagulation rate was derived in 
terms of the Stokes-Einstein diffusion coefficient. After assuming that each collision 
occurred between particles of equal size, Smoluchowski obtained the expression for 
the frequency j $  of Brownian collisions with a test particle : 

where k is the Boltzmann constant, T the temperature, ,u the fluid viscosity, and noo 
the number density of particles far from the test particle. Smoluchowski made no 
allowance for the physicochemical forces mentioned above. Refinements to his work 
are often expressed in terms of a Brownian stability ratio, defined by 

(1 4 

where j, is a coagulation rate including effects of interparticle attraction and 
repulsion and, in modern work, the effect of particle-particle interaction on the 
relative diffusivity (see e.g. Spielman 1970). 

The asymptotic limit in which Brownian motion is of no consequence relative to 
bulk convection was also considered by Smoluchowski (1917). I n  the case of laminar 
shear flow, u = (Gy, O , O ) ,  in a suspension of homogeneous spherical particles with 
radius a ,  the coagulation rate is given by 

w 
-jB’ 

32 j: = a3Gn,, 

if i t  is assumed that the particles follow undisturbed streamlines. One can of course 
also compute similar rates for other types of reference flows, such as pure stretching, 
where v = ( -  Gx, - Gy, 2Gz).  For these reference flows a ratio W, is then defined 
analogously to (1.2). 

Coagulation under conditions where bulk convection and Brownian diffusion are 
simultaneously important is considerably more difficult to  describe than the limiting 
cases given above. Swift & Friedlander (1964) concluded on the basis of their 
experiments that  the two processes were linearly independent over a wide range of 
conditions. An expansion due to van de Ven & Mason (1977), valid when Brownian 
effects are large relative to  bulk convection, has demonstrated that the Swift & 
Friedlander hypothesis is not valid in that regime. 

In  the work presented here we consider the case of convection-dominated colloidal 
coagulation in the presence of small amounts of Brownian motion. The two prototype 
flows of steady pure stretching (uniaxial extension) and steady laminar shear flow 
are examined. It is shown that a regular perturbation expansion for the pair 
probability density suffices to match the boundary conditions. One finds that in the 
case of laminar shear flow the tendency of particles to describe non-repeating orbits 
around a test particle contributes appreciably to the computed value of the 
coagulation rate. The results for pure stretching and for laminar shearing are 
different, but in each case i t  is shown that Brownian and bulk-flow effects are 
interactive, so that  one cannot treat the two contributions as a summation of 
independent effects. 

In $2 we introduce a physical model for the coagulation process, which in this case 
is considered as a binary interaction between two spheres. Analysis of the two-sphere 
dynamics is developed in $3, and a presentation and discussion of the results follows 
in $4. 
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FIGURE 1. Notation for a binary encounter between identical spheres. 

2. The physical model 
The analysis is restricted to binary interactions in a dilute suspension of identical 

spheres. Let the origin of a coordinate system coincide with one sphere, which we 
label as the test sphere. The rate of coagulationj based on the test sphere alone is 
given by the net influx of particles through some surface A* which encloses the test 
sphere, as shown in figure 1.  When a particle undergoes coagulation, it is considered 
to be removed from the system, but particles are supplied to the system a t  a rate 
equal to their removal so that the coagulation process is steady in time. The 
coagulation ra te j  can be expressed in terms of the steady conditional pair distribution 
function P(r )  and the particle velocity u(r) relative to the test sphere by 

where the pair distribution function is defined so that i t  corresponds to  the number 
density of particles a t  a position r from the centre of the test sphere. Thus we must 
know both the particle velocity field and the steady-state pair distribution function 
in order to predict coagulation kinetics. I n  the work reported for the limit of no 
Brownian diffusion (van de Ven & Mason 1976; Zeichner & Schowalter 1977) P(r) was 
known from calculation of particle trajectories, with the condition that the 
concentration of particles was uniform far upstream from the test sphere. I n  the 
present case, solution for P(r)  is more difficult, because particles undergo Brownian 
diffusion in any region of non-uniform concentration. The pair distribution function 
is governed a t  steady state by 

along with appropriate boundary conditions. Here r is the distance from the centre 
ofthe test particle, scaled with particle radius. Note that there are three contributions 
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to the particle velocity U. Because we are assuming that inertial effects are 
unimportant, v can be decomposed into linearly independent contributions from 
colloidal forces, a hydrodynamic force due to bulk flow, and a Brownian force. Each 
of these is discussed below. 

D. L.  FeEe and W.  R. Schowalter 

2.1. Velocity due  to colloidal force 
We shall assume that induced-dipole attraction and electrostatic repulsion are the 
sole contributors to what we are calling colloidal forces between the particles. 
Furthermore, we shall assume that these two effects are adequately described by a 
version of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in the form 
presented by Zeichner & Schowalter (1977). Although inadequacies of the DLVO 
theory are well documented (see e.g. Pashley 1981), there are realistic situations under 
which the theory appears to be quite satisfactory (Zeichner & Schowalter 1979). 

We employ three separate expressions to  describe induced-dipole attraction. Under 
conditions of no retardation, i.e. no phase lag between dipoles, the Hamaker 
expression 

(2.3) 

is used, where V, is the attractive potential, A is Hamaker’s constant, and r is the 
distance between particle centres scaled on the particle radius a. When retardation 
is important, Schenkel & Kitchener (1960) proposed, as alternatives to (2.3) a t  small 
separations, 

- A  1 v -  [ ] (r-2 4 1,p d 0.57), 
A - 12(r-2) 1+1.77p 

2.45 2.17 0.59 v, =- +-] (r-2 4 1,p > 0.57). 
60p 180p2 420p3 

For large separations, Kruyt (1949) has presented an approximation in which effects 
of retardation on the interparticle potential are included, viz 

( r  % 1). 

I n  these expressions p = 27r(r-2) a/A,  where h is the London wavelength for the 
particles and is typically of order 0.1 pm. Further refinements, such as a dependence 
of A on dipole wavelength and on fluid species can be readily accommodated within 
this framework. 

The usual approximations valid for thin double layers, low and uniform surface 
potential and position-independent dielectric strength lead to a repulsive potential 
approximated by 

V, = ++ea$~ln[ l+exp(-a~(r -2) ) ] ,  (2.7) 

where e is the dielectric strength, $o the surface potential and aK 9 1, where K - ~  is 
a measure of the thickness of the ion double layer surrounding a particle. Positive 
signs in (2.7) are used for particles that  interact a t  constant surface potential; the 
case of constant surface charge can be treated by substituting minus signs where a 
choice is indicated and relating the surface charge go to (2.7) by 
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A description of DLVO theory, which is the combination of attractive and repulsive 
potentials presented above, is available in Sonntag & Strenge (1972). Typical 
examples of the composite potential = V, + V, are shown in figure 2. 

The contribution of colloidal forces to the velocity in (2.2) is 

where p is the fluid viscosity and 

(2.10) 

The unit vector e, is taken along a position vector drawn from the origin at  the centre 
of the test particle to the centre ofthe particle ofinterest. C(r )  is a separation-dependent 
relative particle mobility which reflects hydrodynamic interaction between particles. 
Non-dimensional magnitudes of the forces of attraction and repulsion are given by 

f a dvA 
A -  A d r '  

f 1 dV, 
c11.i dr ' R -  

and Rp = c$ia/A is a repulsion number, the magnitude of which is an indication of 
the strength of repulsion relative to attraction. 

2.2. Velocity due to bulk flow 

The physical model employed in this analysis is based on the interaction of two 
equal-sized spheres placed in a velocity field which at  large distances from the 
particles is characterized by a velocity uo varying linearly with position. Thus 

uo = o x r + E . r ,  (2.11) 

where o = gV x uo and E = +[Vuo + (VUO)~] are the constant ambient spin vector and 
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rate-of-deformation tensor, respectively. The velocity of a second sphere relative to 
the test sphere has been found by Batchelor & Green ( 1 9 7 2 ~ )  to be 

rr 
uf = o x r + € - r -  r ,  (2.12) 

where A ( r )  and B(r) are known functions characterizing hydrodynamic interaction 
between the particles. 

Because we are especially interested in relative motion of spheres a t  small separations, 
it is necessary to account for hydrodynamic effects between particles undergoing 
Brownian diffusion. Batchelor (1976) has shown that in such cases the relative 

2.3. Velocity due to Brownian force 

velocity induced by Brownian motion’ is 

uB = -D(r).VInP(r),  

where 
kT rr 

D = 3npa __ { G(r) - r2 + H ( r )  p-:]} 
(2.13) 

(2.14) 

The hydrodynamic functions G(r) (G(r) = +C(r))  and H ( r )  are sown (Batchelor 1976). 

2.4. Governing equation for P(r)  

We now substitute the expressions (2.9) and (2.13) into 

v =  uc+uf+uBj  

and combine (2.15) with (2.2) to obtain 

( r  2 2). 

(2.15) 

(2.16) 

The tilde refers to dimensionless quantities. Lengths have been scaled on a ,  velocities 
on aG, Fc on Ala, and the diffusivity on kT/3npa. TheJlow number F1 is defined by 

6npa3G 
A 

FZ = ~ (2.17) 

and is a measure of the importance of bulk flow relative to interparticle attraction. 
The Peclet number 

Pe = ~ (2.18) 

reflects the importance of convection relative to Brownian diffusion. In  each case G 
is a scalar measure of the strength of the flow field, such as a multiple of the second 
invariant of E. Because Fl = (ZkT/A) Pe it  is clear that Fl and Pe cannot be varied 
independently for a given material and temperature. A distinction was preserved 
between the two dimensionless groups in order to facilitate comparison of results to 
earlier work in which Fl is finite but Brownian motion is ignored. Because one expects 
2kTIA = O ( l ) ,  conditions where FZ = O(1) and Pe % 1 may not be realizable in 
practice. 

3npa3G 
kT 

Boundary conditions for (2.16) are 

P = O  at r = 2 ,  

P + n ,  as r+ooupstream, \ (2.19) 

I as r + 00 downstream. 
ap 
-+0 
ar 
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Upstream and downstream regions, the significance of which will be discussed below, 
are defined respectively by u-r  c 0 and u'r > 0 as r+ 00. n, is the (spatially 
homogeneous) number density in the absence of coagulation. 

3. Analysis 
3.1. Previous work 

In  order to place the present work in its proper context, we indicate how previous 
analyses of colloidal coagulation can be considered as solutions to special cases of 
(2.16). 

In  the case where only Brownian coagulation occurs, i.e. FZ = Pe = 0, (2.16) 
reduces to 

v* ( C R  P )  = E V .  A (B * #P).  (3.1) 

Smoluchowski's analysis corresponds to f c  = 0, and he assumed 0 = /. Then the 
solution of (3.1) is 

(3.2) 

Substitution of (3.2) into (2.1) with u = uB and the additional requirement that 
collisions are between particles of equal size results in (1.1). The results of Spielman 
(1970) are recovered by incorporating F, through (2.10). One obtains 

P = (1 -:) n,. 

(3.3) 

Shear-induced coagulation, as calculated by Smoluchowski, is reproduced if one 
sets Pep' = 0, pc = 0 ,  and A(r)  = B(r)  = 0 in (2.12). Then solution of (2.16) reduces 
to 

where H(2-r) is the Heaviside step function. Once again, an expression for collision 
frequency, for example (1.3), is found from substitution of (3.4) and an appropriate 
velocity function into (2.1). 

The results of van de Ven & Mason (1976) and of Zeichner & Schowalter (1977) 
are also contained in (2.16). They ignored Brownian diffusion (Pe-l = 0) but included 
effects of bulk flow and colloidal forces. As we shall see in $4, when orbiting 
trajectories are present there can be significant differences between coagulation rates 
predicted by these workers and those of the present work, in which a more careful 
analysis is made of the role of those particles undergoing one or more orbits around 
a test sphere. 

3.2. Method of solution for Pe % 1 

Our task is to solve (2.16), using the associated equations (2.12) and (2.14), subject 
to the boundary conditions (2.19). We do this through an expansion 

P = [l - H ( Z - r ) ] n , ,  (3.41 

P = Po + Pe-'Pl + 0(Pec2).  (3.5) 

Thus we obtain the perturbation equations 

a.[;,++ 1 Po = 0, 

u.[;,+,lCF l l  PI = 0. (B * $Po), (3.7) 
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with 
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Po = P, = 0 at r = 2, 

Po = n,, Pl = 0 as r--f  00 upstream, 

ap, ap, 
ar ar 

= 0 as r+  co downstream. - 

From the equation for coagulation rate (2.1), 

where 
j = j, + Pe-31 + O( Pe-’). 

It is instructive first to  inspect the form of solutions to (3.6) and (3.7) in the near- 
and far-field limits r - 2 4 1 and r % 1, respectively. 

The near-$eld solution. At r - 2 4 1 one finds that the dominant, contribution to (3.6) 
is from the term containing CR,, which in turn is governed byfA in (2.10). From (3.2) 
one finds 

(3.11) 

where e, is a unit vector from the test sphere along the line of centres of the two 
interacting spheres. Substitution of (3.1 1)  into (3.6) then yields 

P,, = iko(r - 2 )  + O(r - 2) t ,  (3.12) 

where k, is a constant of integration. Note that this solution ensures that the 
boundary condition (3.8) for Po a t  r = 2 will be met without regard to the choice of 
integration constant. Substitution of (3.12) into the right-hand side of (3.7) shows 
that again the contribution of F, dominates, and an expression for 1; similar to (3.12) 
results. Clearly, the boundary condition for r = 2 is again satisfied without fixing the 
constant of integration and one could proceed likewise tlo find the same near-field form 
for higher terms in the expansion (3.5). This is a fortunate result because it allows 
one to proceed with an analysis based upon a regular expansion for P in powers of 
Pe-I. 

The far-field solution. It is apparent from inspection of terms in (3.6) that for r % 1 
the dominant term is that containing ijf, and we can write 

6 - (if P )  = 0,  (3.13) 

which has the solution (Batchelor & Green 19726) 

(3.14) 

KO being an integration constant. Substitution of the far-field approximations for A ( r )  
and B(r ) ,  which follow directly from (3.6) of Batchelor & Green (1972a), leads to 

Po = KO l+-+o(rP6) , [ E  I (3.15) 

and the upstream boundary condition (3.8) dictates that  KO = noo. 
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Proceeding with P,, (3.7) becomes 

;,.VP, =6.(8.6P0), (3.16) 

and i t  is necessary to  specify the nature of the bulk flow by means of the undisturbed 
velocity gradient G = Vuo. Two types of flow were analysed in detail. These were 
uniaxial extension, defined in rectangular Cartesian coordinates by 

and laminar shear flow, 

(3.17) 

(3.18) 

For these two cases it can be shown that 

' P --noo@-3 "' [ 15z6 + 39+z3 - 30+2] 
125 

- 324 {(+ + z3)3 

for uniaxial extension, where + = (x2+y2)z and we have used the form applicable 
for z > 0, and 

5 

with y > 0 for laminar shear flow. I n  these equations and henceforth, coordinates are 
dimensionless. I n  (3.20) the positive and negative signs correspond to x < 0 and x > 0 
respectively. Equations (3.19) and (3.20) apply to upstream regions of the flow space 
and are useful in the context of (3.5) only when Pec'P, 4 Po. 

The intermediate region. I n  this region the perturbation equations (3.6) and (3.7) 
were solved numerically through an adaptation, now briefly described, of the method 
of characteristics. 

The perturbation equations (3.6) and (3.7) can be rewritten in the form 

where 

(3.21) 

(3.22) 
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e,, eo and e6 being unit vectors for a spherical coordinate system. The origin is taken 
a t  the centre of the test sphere, and the connection with rectangular Cartesian 
coordinates is given by z = r cos 8, x = r cos 8 cos $. Rearranging (3.21) and (3.22) into 
a coupled system of ordinary differential equations, one obtains 

(3.23) 

The first two sets of equations in (3.23) represent relative sphere trajectories in the 
absence of Brownian motion, and since the functions Fi are known Po can be calculated 
along the trajectories. Solutions for P, are of course more difficult to  obtain because 
of the presence of e * ( D . e P o ) .  Details of the numerical procedure are contained in 
appendix B of Feke (1981). We state here only the general steps in the numerical 
algorithm. 

(1)  A primary trajectory was chosen by selecting initial coordinates on an 
upstream portion of the surface A*. I n  close proximity to  this initial position, 
coordinates were chosen for five auxiliary trajectories, thus forming a trajectory 
bundle from which the term 9 (b - 6 P o )  could be estimated. Initial values for Po and 
P ,  were found using the approximate far-field solutions (3.15) and (3.19) or (3.20). 

(2) A fourth-order Runge-Kutta method was used to  solve for Po along each 
trajectory in a bundle. 

(3) A finite-difference approximation was found for - (6 - 9 P o )  along the primary 
trajectory. 

(4) From the last equation of (3.23), P, was calculated by using a generalized 
multistep method. 

( 5 )  When the primary trajectory reached the collision surface, r = 2, or passed 
downstream through A*, the calculation was terminated. (See $3.4 for exceptions.) 

(6 )  Steps (1)-(5) were repeated until Po and PI were known for a sufficient number 
of positions to permit calculation of j from (2.1). 

3.3. Uniaxial extension 

Because there is no component of fif in the $-direction for the undisturbed flow given 
by (3.17), (3.21) and (3.22) are two-dimensional, and only three trajectories are needed 
for each bundle. Several base characteristics (particle trajectories for Pe-l = 0) are 
shown in figure 3. The solution is of course symmetric about the plane 8 = in. The 
dashed curve separating upstream and downstream regions is given by 

C(r)kc*er  = 0, 
F1 

F,(r ,  8 )  = (1  - A ( r ) )  r(3 cos2 8 - 1)  + (3.24) 

where the point (r*,8*) is on the surface A*. Identification of the curve with the 
upstream4ownstream division is of course completely correct only in the Po 
approximation, but the change due to a Brownian force should not affect the 
calculation a t  O(Pe-l). 

The limiting trajectory, which separates coagulating and noncoagulating en- 
counters, is found by selecting an initial condition very near to 8 = 0, r = 2, and 
integrating backwards. I n  this way Olim is found, and collision can be expected for 
all Blim < 8 < in. I n  most integrations, r* = 10 was used, and far-field forms were 
used to initialize Po and P,  along the characteristics. 

Lines of constant Po, scaled on nco, are shown in figure 4 for the case FZ = 1.0, 
Rp = 0. As one would expect, a maximum exists for Po, and the maximum occurs 
a t 8  = inandr z 2.65.Inthewakeofthetestsphere(e x 0) P,dropssignificantlybelow 
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0 3* e 
FIGURE 3. Typical relative trajectories in the uniaxial extension problem. The dashed line, passing 
through the surface A* at T = r* and 6 = 8* separates upstream from downstream regions of space. 
The limiting trajectory separates colliding from non-colliding trajectories. 

unity, an expected result. The effect of diffusion is shown in figure 5, where we have 
schematically indicated departures of trajectories from the base characteristics due 
to the presence of diffusion. Again, as one would expect from intuition and from 
figure 4, diffusion effects are minimal at  large particle separations because of the 
homogeneity of the distribution function. 

3.4. Laminar shear flow 
Solution for this case is substantially more difficult than for uniaxial extension, the 
flow now being three-dimensional, although there is symmetry between the first and 
third, and second and fourth quadrants of the (2, y)-plane. 

It is well known that in the absence of diffusion and interparticle forces, there are 
some closed trajectories of particles orbiting around the test particle. Similar closed 
trajectories do not exist when interparticle forces are included. Although trajectories 
may involve multiple circulations around the test particle, the trajectory may spiral 
inward toward eventual coagulation, or outward, the ultimate result being a 
downstream path toward infinite separation. In figure 6 we have shown the locus of 
orbiting trajectories, for Rp = 0, as they pass through the integration surface A*. 
One can identify two modes of particle orbits. In  mode 1 the particle intersects A* 
more than once on its way to capture or release. In mode 2 there is only a single 
intersection with A*, but there are multiple circuits around the polar axis as the 
particle moves towards capture. Obviously, the number of orbiting trajectories in 

2 F L M  133 
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FIGURE 4. Contours of constant Po in uniaxial extension. F1 = 1 ,  Rp = 0. 

Values of Po are scaled on n,. 

each mode depends on the radius defining A*. I n  principle, values of Po and 
P, can be calculated just as they were in 3.3. However, the complications introduced 
by orbiting trajectories are substantial. For example, in order to initialize calculations 
with the far-field forms of Po and PI ,  one wishes to pick a point corresponding to a 
particle that has not already made one or more circuits around the test particle. I n  
addition, a trajectory bundle which a t  the point of initialization is satisfactorily 
clustered to permit estimation of the term a - (B - VP,), may, upon one or more orbits, 
become too disperse. 

As in the case of extensional flow, certain trajectories have special significance. 
These trajectories can be associated with the first two characteristic equations of 
(3.23) if, for the moment, we ignore the effect of Brownian motion on trajectories. 
For example, consider the equatorial plane ((z,y)-plane) for the case of a purely 
attractive interparticle potential. Representative particle paths are shown in figure 7 .  
Consider the trajectory that passes through the point r = r* ,$  = 0. The history of 
the particle associated with this trajectory can be found by integrating the charac- 
teristic equations backwards until the particle is upstream. Clearly, this is a dividing 
trajectory in the sense that particles with initial coordinates q5' < q5 < n will not again 
penetrate A* before capture. 

It is also possible to identify a limiting trajectory that separates coagulating from 
noncoagulating particles. Since all orbiting trajectories eventually result in 
coagulation for the case of a purely attractive interparticle potential, the limiting 
trajectory separates open from orbiting trajectories. This trajectory is identified in 
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FIQWRE 5. Effect on Brownian diffusion on particle trajectories in uniaxial extension. Arrows 
superposed on the base trajectories represent the relative velocity including diffusion. 

figure 7 by q5 = q51im a t  r = r* upstream. Thus choice of an initial value of q5 on r* 
such that $R < < q51im results in an open trajectory. Mode 1 orbiting trajectories 
are found for initial coordinates r = r*, q51im < q5 < 4'. By means of the value q5 = q5* 
in the second quadrant, we identify those trajectories which are re-entering the test 
surface. Thus one notes from figure 7 that trajectories with initial coordinates 
r = r*, q51im < q5 < $',pass back into A* at $*--A < q5 < 0. By symmetry, values of 
the distribution functions for this region of space must be identical to values at the 
corresponding positions q5* < q5 < R. Thus r = r*, q5 = +* separates upstream and 
downstream regions. Trajectories passing through A* with +-A < q5 < q5* are coming 
from upstream regions of space. Trajectories intersecting A* with q5* < q5 < R have 
initial upstream coordinates on A* with q51im --A < q5 < q5' --A. 

The first step in the numerical procedure was to identify 4'. This was done by 
integrating backwards the trajectoryt crossing A* with q5 = 0. As one considers 
planes other than the equatorial plane, q5r = q5r(0). After q5'(B) had been identified, 
approximately 100 initial trajectory coordinates were selected at r = r * ,  0 < 0 < 
and &R < q5 < q5'(B). Initial values of Po and PI were assigned from (3.15) and (3.20) 
to each trajectory in the bundle. Probability densities were calculated along the 
characteristics until all trajectories passed through the downstream side of A*. For 
those trajectories with initial coordinates q&,(B) < q5 < q5'(0), the calculation was 

~._ 

t It is convenient to continue to call the base characteristic curves trajectories, even though they 
actually correspond to particle paths only in the limit Pe = m. 

2-2 
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Mode 1 
FIGURE 6. Possible orbiting trajectories in laminar shear flow. Trajectories of mode 1 repeatedly 

penetrate the integration surface. Those of mode 2 penetrate only once. 

Y 

t 

FIGURE 7 .  Representative trajectories in laminar shear flow for Rp = 0. Upstream regions for y > 0 
are given by in < q5 < q5*., Trajectories intersecting A* in the region &,,, < q5 < 6' correspond to 
mode-1 orbiting trajectories. 

continued until the trajectories entered the integration surface a second time, a t  
which point the calculation was terminated. Values of Po and PI on the integration 
surface were used in the flux calculations. 

For the results reported here a value of r* = 10 was used, and &, was found by 
continuing calculations on the downstream side of A* to r = 15. If the trajectory had 
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RE 8. Contours of constant Po, scaled on n,, in laminar shear flow. F2 = 1 ,  Rp 
X 

= 0. 

not reversed direction, it was assumed that the initial value of # was such that 

For comparison with the case of uniaxial extension, we show in figure 8 several 
4 < A i m *  

contours of Po in the equatorial plane for laminar shear flow with Rp = 0, F1= 1. 

4. Results and discussion 
With the spatial variation of P(r)  known over the surface A*, one is in a position 

to perform the kinetic calculation (2.1). It is useful to consider i t  in terms of the 
contributions from (3.9) and (3.10) so that, to order Pe-', 

j = j, + Pec'j,. (4.1) 

For uniaxial extension, representative results are shown in figures 9 and 10. In the 
latter case, although a modest amount of repulsion is present in the colloidal force 
(Rp = l) ,  there is no secondary minimum in the potential curve corresponding to 
figure 2. 

Perhaps the most surprising result shown in the figures is the indication that 
diffusion can act to increase or to decrease coagulation rate as the flow number F1 
is increased. This seems to be a consequence of the spatial variation of probability 
distribution function and the resultant diffusion of particles down the probability 
density gradient. Consider, for example, the base characteristics and corresponding 
regions of high and low probability density shown in figure 11. The P, correction 
accounts for diffusion of particles into the regions labelled Po 4 1 ,  from which they 
will tend to be convected downstream without collection. Clearly, this is a process 
which interacts closely with the strength of the basic flow, and one can imagine 
situations where the overall effect is to enhance or to decrease coagulation. 

Qualitatively similar results are shown for simple laminar shear flow in figure 12. 
In  both cases it is immediately seen that the idea of additivity, suggested by Swift 
& Friedlander (1964) and referred to earlier, does not apply. There can be strong 
coupling between flow strength and the action of Brownian motion. 
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FIGURE 9. Predicted coagulation rates for uniaxial extensional flow. R p  = 0. Values of j ,  andj ,  
have been scaled on a3Gn,. 
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FIGTJRE 10. Predicted coagulation rates for uniaxial extensional flow, Rp = 1 ,  a~ = 10. 
Values of j, and j, have been scaled on a3Gnm. 
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FIGURE 11. Redistribution of particles due to diffusion. 
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FIGURE 12. Predicted coagulation rates for laminar shear flow. Rp = 0, andj,  andj ,  have been 
scaled on a3Cn,. ( a )  j,. ( 6 )  j,. 

An attempt was made to assess the sensitivity of the results to numerical 
approximations. Maximum propagated error in the probability function (scaled on 
n,) is estimated to be lop4. It was found that an initial trajectory bundle contained 
in a circle centred a t  the primary trajectory and with radius 0(1OP6a) provided the 
best balance between truncation and roundoff error in the calculation of $ * (B * $Po). 
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FIGURE 13. Comparison of stability ratios W,  for flow-induced coagulation (Pe-' = 0). 

-_- , trajectory analysis of Zeichner & Schowalter (1977); -, from j, of present work. 

By comparing results for different placements of the trajectory bundles, some idea 
of the error in the calculation o f j  was possible. For extensional flow, errors inj ,  and 
j, are believed to be within f 0 . l  yo and f 1 % respectively. The same quantities for 
laminar shear flow are estimated to be k 1 yo and f 7 yo respectively. 

Finally, we comment on comparison of the present values of j, with those of 
Zeichner & Schowalter (1977). The two approaches coincide for extensional flow. In 
the case of laminar shearing, the results show measurable differences. These are 
indicated in plots of stability ratio for Pe-' = 0 shown in figure 13. Aside from a minor 
numerical error in the earlier work (see Feke 1981), the difference is believed to be 
due to the effect of orbiting particles. I n  the earlier analysis, coagulation rates were 
computed without provision for mode-1 orbiting trajectories (figure 6).  As a result, 
coagulation rates were overestimated. 

I n  conclusion, the present work provides an  indication of how small amounts of 
Brownian diffusion will affect a predominantly shear-induced coagulation process. 
One notes that the interaction between the two processes is complex, hydrodynamics 
dictating to a large degree the spatial change of the pair distribution function and 
the time during which a given particle approaching a test particle will be subject to  
the forces induced by a non-homogeneous probability function. 

The authors are grateful to  the Xerox Corporation for partial support of this 
research. D. L. Feke was the recipient of a National Science Foundation predoctoral 
fellowship. 
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